This short video shows you how to create training datasets in Hopsworks using the Java or Scala API.
This short video shows you how to interact with the Hopsworks Feature Store using the Java or Scala API.
Hopsworks provides a Python environment per project that is shared among all the users in the project. All common installation alternatives are supported, , in addition to libraries packaged in a .whl or .egg file and those that reside on a git repository.
. Hopsworks provides Jupyter as a service in the platform, including kernels for writing PySpark/Spark and pure Python code. With an intuitive service to install Python libraries covered in a previous blog and access to a Jupyter notebook, getting started with your favourite ML library requires little effort in Hopsworks.
Connecting Hopsworks to your organisation’s Azure account is the first step towards using the Feature Store: 1. Connect your Azure account, 2. Create and configure a storage, 3. Add a ssh key to your resource group, 4. Enable permissions for Hopsworks to access
Connecting Hopsworks to your organisation’s AWS account is the first step towards using the Feature Store: 1. Connect your AWS account, 2. Create an instance profile, 3. Create a S3 bucket, 4. Create a SSH key, 5. Enable permissions for Hopsworks to access
Get started with hopsworks.ai
On Hopsworks, learn how to run your first PyTorch application on a Jupyter notebook